Surface evolution during crystalline silicon film growth by low-temperature hot-wire chemical vapor deposition on silicon substrates
نویسندگان
چکیده
We investigate the low-temperature growth of crystalline thin silicon films: epitaxial, twinned, and polycrystalline, by hot-wire chemical vapor deposition HWCVD . Using Raman spectroscopy, spectroscopic ellipsometry, and atomic force microscopy, we find the relationship between surface roughness evolution and i the substrate temperature 230–350 °C and ii the hydrogen dilution ratio H2/SiH4=0–480 . The absolute silicon film thickness for fully crystalline films is found to be the most important parameter in determining surface roughness, hydrogen being the second most important. Higher hydrogen dilution increases the surface roughness as expected. However, surface roughness increases with increasing substrate-temperature, in contrast to previous studies of crystalline Si growth. We suggest that the temperature-dependent roughness evolution is due to the role of hydrogen during the HWCVD process, which in this high hydrogen dilution regime allows for epitaxial growth on the rms roughest films through a kinetic growth regime of shadow-dominated etch and desorption and redeposition of growth species.
منابع مشابه
Low temperature amorphous and nanocrystalline silicon thin film transistors deposited by Hot-Wire CVD on glass substrate
Amorphous and nanocrystalline silicon films obtained by Hot-Wire Chemical Vapor deposition have been incorporated as active layers in n-type coplanar top gate thin film transistors deposited on glass substrates covered with SiO2. Amorphous silicon devices exhibited mobility values of 1.3 cmVs, which are very high taking into account the amorphous nature of the material. Nanocrystalline transist...
متن کاملGas phase and surface kinetic processes in polycrystalline silicon hot-wire chemical vapor deposition
Experiments and numerical simulations have been conducted to determine critical parameters for growth of polycrystalline silicon via hot-wire chemical vapor deposition. Reactor-scale simulations performed using the Direct Simulation Monte Carlo (DSMC) method have revealed a number of important phenomena such as a sharp drop of 1700 K in the gas temperature from the wire to substrate. The gas-ph...
متن کاملHot-Wire Chemical Vapor Deposition of Silicon and Silicon Nitride for Photovoltaics: Experiments, Simulations, and Applications
Hot-wire chemical vapor deposition is a promising technique for deposition of thin amorphous, polycrystalline, and epitaxial silicon films for photovoltaic applications. Fundamental questions remain, however, about the gas-phase and surface-kinetic processes involved. To this end, the nature of the wire decomposition process has been studied in detail by use of mass spectrometry. Atomic silicon...
متن کاملLow temperature plasma deposition of silicon thin films: From amorphous to crystalline
We report on the epitaxial growth of crystalline silicon films on (100) oriented crystalline silicon substrates by standard plasma enhanced chemical vapor deposition at 175 °C. Such unexpected epitaxial growth is discussed in the context of deposition processes of silicon thin films, based on silicon radicals and nanocrystals. Our results are supported by previous studies on plasma synthesis of...
متن کاملOhmic Contact of Cu/Mo and Cu/Ti Thin Layers on Multi-Crystalline Silicon Substrates
Cu-Mo and Cu-Ti contact structures were fabricated on multi-crystalline silicon substrates to provide a low resistance ohmic contact. Deposition steps are done in an excellent vacuum chamber by means of electron beam evaporation and samples are then annealed for the realization of an efficient alloy layer. The effects of process parameters such as film thickness, annealing duration and temp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006